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1
Decision/action requested

It is proposed to approve this key issue in TR 33.898
2
References

3
Rationale

The contribution proposes a KI to AIML model protection.

4
Detailed proposals
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5.X
Key Issue #X: Federated Learning AIML model protection

5.X.1
Key issue details

With Federated Learning (FL) training model, an Application Server (AS) selects a set of UEs/devices to participate in a distributed training session. Every training session includes several training cycles. During each cycle, a set of UEs is selected by AS responsible for training a global model. In an ideal scenario, AS should repeatedly re-select a group of UEs performing well. However, frequently shuffling participants (UEs) is also required to get better training results; the more diverse participants in a training session implies the more diverse environments/datasets to be used in training which ultimately results in a more accurate result.

Federated learning introduces potentially more serious threats than the regular AI/ML: clients, who previously acted only as passive data providers, can now access the intermediate model it received and submit updates to be aggregated into the global model as part of the federated learning process. This creates an opportunity for malicious clients to manipulate the training process with little restriction. In particular, adversaries posing as honest clients can send erroneous updates that maliciously influence the properties of the trained model, which is known as model poisoning. Since the AS is unable to view client training data and does not have a validation dataset, the server cannot easily verify which client data updates are genuine. In general, there are two types of attacks described in [yy], poisoning attacks which include data poisoning attack and model poisoning attack, and Byzantine attacks which include Gaussian attack, Omniscient attack, and Flip bit attack. 

As pointed by the discussion paper of the 5GC AIML infrastructure security capability[zz], in many AIML use cases, it is important for the 5GC to perform the threat detection for AIML operations like distributed/hierarchical AIML, AIML Splitting, and etc. In addition, the AS usually has no visibility of client training data and validation dataset, the server cannot easily verify the training data used by client are genuine. 
For example, in case of distributed or hierarchical FL learning, the AS only receives already aggregated model from its next level aggregate. It is extremely impossible to identify which UE client submitted the model that contains the threat. Therefore, the intermediate node in 5GC have to pre-process data and to perform security detection of threat of intermediate model submitted by UEs before locally aggregating into a consolidated model to be delivered to the next level aggregator.

This key issue aims to study the following issues: (i) how to dynamically evaluate the security vulnerabilities in the intermediate model that is sent to a UE for the next round FL; (ii) how to evaluate and scrutinize the intermediate model submitted by the UE for AIML model; (iii) how to minimize and mitigate threats detected from an intermediate model, such as poisoning attack on AIML model and tampering attacks.

5.X.2
Security threats

A malicious UE can launch AI/ML attacks on the AIML intermediate models such as poisoning attacks, Byzantine attacks, etc. 

5.X.3
Potential security requirements

3GPP system shall provide means to protect against attacks on AIML model in FL scenario.
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